Your Perfect Assignment is Just a Click Away

Starting at $8.00 per Page

100% Original, Plagiarism Free, Customized to Your instructions!

glass
pen
clip
papers
heaphones

Case Study – Improving Business-to-Business Sales Using Machine Learning Algorithms

Case Study – Improving Business-to-Business Sales Using Machine Learning Algorithms

Case Study – Improving Business-to-Business Sales Using Machine Learning Algorithms

Case Summary: Champo Carpets is one of the largest carpet manufacturing companies based in India, with customers across the world, including some of the most reputed stores and catalog companies. Champo Carpets is based out of Bhadohi, Uttar Pradesh, which is one of the most famous clusters of carpet weaving in India. This cluster is spread over 1,000 sq. km and comprises many villages and districts in and around it. The company is a vertically integrated manufacturer and exporter of carpets and floor coverings, with more than 52 years of existence. At the beginning of 2020, the company employed 1,500 people with a capacity to produce 200,000 pieces of carpets and floor coverings per month. As part of sales and marketing, Champo Carpets shared sample designs with its potential customers, based on which the customer placed an order. The sample design selection was done in various ways and the process itself is costly and elaborate. To capture industry trends, a team of the company visited various trade shows and events and sent samples to the client as per the latest fiber and color trends. However, their sample-to-order conversion ratio was low compared to the industry average. This had cost repercussions as well as lost opportunities. The company identified the cause as inaccurate targeting of products to their customers. It subsequently implemented an enterprise resource planning (ERP) application and has been capturing data at every point of production as well as sales. They believe this accumulated data can help target their products accurately to the right clients and design an appropriate recommender system.

Learning Objectives The primary objective of the case is to illustrate how machine learning algorithms can be used to manage business-to-business (B2B) sales. The learning objectives include the following:

Access attached the full case or article. After a critical review of the case, respond to the questions below.

For a better understanding of the issues related to the problem, knowledge of data visualization using Tableau, R, or Python programming will be useful.
1. With the help of data visualization, provide key insights using exploratory data analysis.
2. What kind of analytics and machine learning algorithms can be used by Champo Carpets to solve their problems and in general, for value creation?
3. Develop ML models to help identify features that contribute toward conversion (or non-conversion) of samples sent to customers.
4. Discuss the data strategy for building customer segmentation using clustering. What are the benefits Champo Carpets can expect from clustering?
5. Discuss clustering algorithms that can be used for segmenting Champo Carpets’ customers.6. Develop customer segmentation using K-means clustering. Discuss the optimal number of clusters, significant variables, and cluster characteristics.
7. Discuss the data strategy that can be used for building recommender system models.
8. Develop an association rule mining algorithm, which can be used for recommendation.
9. Build collaborative filtering techniques for recommender systems.
10. What will be your final recommendations to Champo Carpets?

Requirements:

  • Your analysis will be considered complete, if it addresses each of the 9 components and subcomponents outlined above.
  • Use of proper APA formatting and citations. Supporting evidence from outside resources should be used and those must be properly cited. 
  • Include your best critical thinking and analysis to arrive at your justification.
  • Approach the assignment from the perspective of the senior executive leadership of the company.

    Answer all questions thoroughly. Min 7-8 pages without reference page and main header page.


"Place your order now for a similar assignment and have exceptional work written by our team of experts, guaranteeing you A results."

Order Solution Now

Our Service Charter


1. Professional & Expert Writers: Eminence Papers only hires the best. Our writers are specially selected and recruited, after which they undergo further training to perfect their skills for specialization purposes. Moreover, our writers are holders of masters and Ph.D. degrees. They have impressive academic records, besides being native English speakers.

2. Top Quality Papers: Our customers are always guaranteed of papers that exceed their expectations. All our writers have +5 years of experience. This implies that all papers are written by individuals who are experts in their fields. In addition, the quality team reviews all the papers before sending them to the customers.

3. Plagiarism-Free Papers: All papers provided by Eminence Papers are written from scratch. Appropriate referencing and citation of key information are followed. Plagiarism checkers are used by the Quality assurance team and our editors just to double-check that there are no instances of plagiarism.

4. Timely Delivery: Time wasted is equivalent to a failed dedication and commitment. Eminence Papers are known for the timely delivery of any pending customer orders. Customers are well informed of the progress of their papers to ensure they keep track of what the writer is providing before the final draft is sent for grading.

5. Affordable Prices: Our prices are fairly structured to fit in all groups. Any customer willing to place their assignments with us can do so at very affordable prices. In addition, our customers enjoy regular discounts and bonuses.

6. 24/7 Customer Support: At Eminence Papers, we have put in place a team of experts who answer all customer inquiries promptly. The best part is the ever-availability of the team. Customers can make inquiries anytime.